Recall (dot product)

let , be is the same in .

Dot product of .

so

Properties of dot products:

Fact: where is the angle between and .

Proof (law of cosine)

||\vec{b} - \vec{a}||^2 = ||a||^2 + ||b||^2 - 2 ||\vec{a}|| ||\vec{b}|| \cos \theta\\ (\vec{b} - \vec{a})(\vec{b} - \vec{a}) = \vec{a}\cdot\vec{a} + \vec{b}\cdot\vec{b} - 2 ||\vec{a}|| ||\vec{b}|| \cos \theta \end{aligned} $$ after reduction.. $$ \begin{aligned} -2\vec{a}\cdot\vec{b} = -2||\vec{a}|| ||\vec{b}|| \cos \theta\\ \vec{a}\cdot\vec{b} = ||\vec{a}|| \cdot ||\vec{b}|| \cos \theta \end{aligned} $$ Corrolary: $\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$ Ex: Find the angle between u=[-1\\1\\2] and v[2\\1\\-1] $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{||\vec{a}|| \cdot ||\vec{b}||}$ dot product works out to: -2 + 1 - 2 = -3 $||u|| = \sqrt{-1^2 ~~ 1^2 ~~ 2^2} = \sqrt{6}$ $||v|| = \sqrt{2^2+1^2+-1^2} = \sqrt{6}$ plug into $\cos\theta$ $\frac{-3}{\sqrt{6}^2} = \frac{-3}{6} = \frac{-1}{2}$