Math
Happens in calculus. It means the “rate of change” of something.
Definition of the derivative function
Let f be a differentiatable function on open interval I. The function f′(x)=h→0limhf(x+h)−f(x)
is the derivative of f .
Notation: Let y=f(x). The following notations all represent the derivative of f. f′(x)=y′=dxdy=dxdf=dxdf=dxdy
Power rule
iff(x)=xn thenf′(x)=nxn−1
The rules
Constant multiple rule dxd(cf(x))=c⋅f′(x)
sum/difference rule dxd(f(x)±g(x))=f′(x)±g′(x)
constant rule dxd(c)=0
product rule dxd(f(x)g(x))=f(x)g′(x)+f′(x)g(x)
quotient rule dxd(g(x)f(x))=g(x)2g(x)f′(x)−f(x)g′(x)
power rule dxd(xn)=n⋅xn−1
generalized power rule dxd(g(x)n)=n⋅(g(x))n−1⋅g′(x)
Chain rule f(g(x))=f′(g(x))⋅g′(x)
Derivative of trigonometric functions dxd(sinx)dxd(cosx)dxd(tanx)dxd(cscx)dxd(cotx)=cosx=−sinx=sec2x=secxtanx=−csc2x
derivative of exponential functions where a > 0 & a != 1 dxd(ax)dxd(ex)=lna⋅ax=ex
others I don’t have a name for dxd(lnx)dxd(x)=x1=1