calculus
Lecture 5.1 - Integrals Involving Inverse Trig Functions
https://youtu.be/yeaI1XhQWVQ
Review of inverse functions
f(x) and f^-1(x) are inverse functions, so f ( f − 1 ( x )) = x
Using the chain rule, also, f ′ ( f − 1 ( x )) ⋅ ( f − 1 ) ′ ( x ) = 1
..which would mean: ( f − 1 ) ′ ( x ) = f ′ ( f − 1 ( x )) 1
In the last class, they showed how d x d [ e x ] = e x , therefore d x d [ l n ( x )] = x 1 .
f ( x ) = e x f ′ ( x ) = e x f − 1 ( x ) = l n ( x ) d x d [ l n ( x )] = e l n ( x ) 1 = x 1
Inverse trig functions
d x d [ s i n − 1 ( x )] = 1 − x 2 1
f ( x ) = s in ( x ) f ′ ( x ) = cos ( x ) f − 1 ( x ) = s i n − 1 ( x ) f ′ − 1 ( x ) = f ′ ( f − 1 ( x )) 1 d x d [ s i n − 1 ( x )] = cos ( s i n − 1 ( x )) 1
d x d [ t a n − 1 ( x )] = x 2 + 1 1
f ( x ) = t an ( x ) f ′ ( x ) = se c 2 ( x ) se c 2 ( x ) = co s 2 ( x ) 1 f − 1 ( x ) = t a n − 1 ( x ) ( f − 1 ) ′ ( x ) = f ′ ( f − 1 ( x )) 1 d x d [ t a n − 1 ( x )] = se c 2 ( t a n − 1 ( x )) 1 = co s 2 ( t a n − 1 ( x ))
Results
I feel like his diagram is really useful here as well b/c it shows how you do (cos(tan^-1(x))) by drawing out the triangle:
so b/c of Fundamental theorem of calculus ,
∫ 1 − x 2 1 d x = s i n − 1 ( x ) + C ∫ x 2 + 1 1 d x = t a n − 1 ( x ) + C
To make these work, you need to remember how to find perfect square trinomials.
∫ x 2 + 4 x + 8 1 d x
u d u ∫ x 2 + 4 x + 8 1 d x ∫ ( x 2 + 4 x + 4 ) + 4 1 d x ∫ ( x + 2 ) 2 + 4 1 d x 4 1 ∫ 4 ( x + 2 ) 2 + 1 1 d x 4 1 ∫ ( 2 x + 2 ) 2 + 1 1 d x = 2 x + 2 = 2 1 d x 2 1 ∫ u 2 + 1 1 d u 2 1 t a n − 1 ( u ) + C 2 1 t a n − 1 ( 2 x + 2 ) + C "borrow 4 from 8 to make ’perfect square’ move 1/2 from the outside into the du
∫ 4 − 2 x − x 2 1 d x
u d u ∫ 4 − 2 x − x 2 1 d x ∫ 5 − ( x 2 + 2 x + 1 ) 1 d x ∫ 5 − ( x + 1 ) 2 1 d x ∫ 5 ( 1 − 5 ( x + 1 ) 2 ) 1 d x ∫ 5 1 − ( 5 x + 1 ) 2 1 d x = 5 x + 1 = 5 1 d x ∫ 1 − u 2 1 d u s i n − 1 ( u ) + C s i n − 1 ( 5 x + 1 ) + C
Homework
6.1 43-52, 61-78
47 ∫ x 4 − 16 x 2 5 d x
∫ x 4 − 16 x 2 5 d x
I need to remove x^2 from the denominator there. Not entirely sure how to do it in a way that balances out.
50
∫ − x 2 + 6 x + 7 2 d x
53 validate
u d u ∫ ( x 3 + 3 ) 2 x 2 d x = x 3 + 3 = 3 x 2 d x ∫ u 2 3 1 d u 3 1 ∫ u 2 d u 3 1 3 u 3 u 3 1/3rd of inverse u 2
66
∫ 4 x 2 + 1 2 d x
72
∫ x 2 + 9 x 3 d x
74
∫ co s 2 ( x ) + 1 s in ( x ) d x
6.2 5-49
5 ∫ x sin x d x
u d u v d v ∫ x sin x d x = x = d x = cos ( x ) = s in ( x ) d x = uv − ∫ v d u = x ⋅ cos ( x ) − ∫ cos ( x ) d x = x ⋅ cos ( x ) − s in ( x )
10 ∫ x 3 e x d x
∫ x 3 e x d x u d u v d v x 3 e x − ∫ e x 3 x 2 x 3 e x − e x 3 x 2 = x 3 = 3 x 2 = e x = e x
17 ∫ s i n − 1 ( x ) d x
30 ∫ x x − 2 d x
u d u v d v 6.2, number 30 ∫ x x − 2 d x = x = d x = 3 2 ( x − 2 ) 2 3 = ( x − 2 ) .5 d x = x ⋅ 3 2 ( x − 2 ) 2 3 − ∫ 3 2 ( x − 2 ) 2 3 d x = x ⋅ 3 2 ( x − 2 ) 2 3 − ( x − 2 ) .5 + C
36 ∫ e 2 x cos ( e x ) d x
39 ∫ e x d x
42 ∫ − 1 1 x e − x d x
46 ∫ 0 1 x 3 e x d x
Quizes
Quiz 1
1
∫ 1 4 5 x e x 2 d x turns into ∫ A B C e u d u . What are A B & C?
2
value of ∫ 0 0.6 x 2 + 4 1 d x ?
∫ 0 0.6 x 2 + 4 1 d x 4 1 ∫ 0 0.6 ( 2 x ) 2 + 1 1 d x u = 2 x d u = 2 1 d x 4 1 tan − 1 ( u ) ∣ 0 0.6 4 1 ( tan − 1 ( 0.6 ) − tan − 1 ( 0 ))
u = (1/2 x)
du = 1/2 dx
1/4 tan-1(x)
1/4 tan-1(x/2)
3
No clue. guessing.
∫ s i n 3 ( x ) co s 2 ( x ) d x u = cos ( x )
4
( u + 2 ) ( u + 2 ) = u 2 4 u 2 u + 4 x + 8 + 3
5
∫ 0 3 π x cos ( 2 x ) d xu = x d u = d xv = s in ( 2 x ) ⋅ 2 d v = cos ( 2 x ) d xu ⋅ v − ∫ v d u 2 x ⋅ s in ( 2 x ) − ∫ s in ( 2 x ) ⋅ 2 d x 2 x ⋅ s in ( 2 x ) + cos ( 2 x )
Quiz 2
1
u d u ∫ 1 4 3 x e x d x = x = 3 2 x 2 3 d x ∫ 1 4 3 u e u d x 2 3 u 2 e u + C ∣ 1 4
2
exact value of:
∫ 0 0.6 x 2 + 4 1 d x 4 ∫ 0 0.6 ( 2 x ) 2 + 1 1 d x u 4 t a n − 1 ( u ) ∣ 0 0.6 4 t a n − 1 ( 0.6/2 ) = 2 x
So I don’t pull the 4 out. I think it’s 1/4
4
∫ x − 2 x 2 + 4 x + 3 d x u d u ∫ u 2 u + ( 4 u + 4 ⋅ 2 ) + 3 ∫ u 6 u + 15 ∫ 6 u + 15 ⋅ u 1 = x − 2 = 2 1 x 2 = 3 u 2 ⋅ ln ∣ u ∣ + C = 3 ( x − 2 ) 2 ⋅ ln ∣ x − 2∣ + C
Quiz 3/4
1.
Consider the integral ∫ 1 2 4 x 3 cos ( x 2 ) d x
w/ u = x 2 , it becomes ∫ A B C u D cos ( u ) d u . What is a/b/c/d?
a=1
b=4 (b/c we need to account for previous squaring
C = 4 (constant)
D = 3/2 (1 + 1/2 of x^2)
—
Seems like this wasn’t quite right. Instead, when u=x^2, du = 2x, which means the 4x^3 would be udu. This means the C constant would be 2, not 4.
This also means that D would be 1, not 1.5.
2
Find the exact value
∫ 0 0.6 x 2 + 4 1 d x 4 1 ∫ 0 0.6 4 x 2 + 1 1 d x 4 1 ∫ 0 0.6 ( 2 x ) 2 + 1 1 d x u d u 2 1 ∫ 0 0.3 ( u ) 2 + 1 1 d u 2 1 t a n − 1 ( u ) ∣ 0 0.6 2 1 t a n − 1 ( 2 x ) ∣ 0 0.6 2 1 t a n − 1 ( 0.3 ) = 2 x = 2 d x
I think going to 0.3 is because x went from x/2 to just u, so divide the B value.
3
Find ∫ s i n 5 ( x ) d x where u = cos ( x ) .
∫ s i n 5 ( x ) d x ∫ ( 1 − co s 2 ( x ) ) 2 ⋅ s in ( x ) d x u = cos ( x ) d u = s in ( x ) ∫ ( 1 − u 2 ) 2 d u
u = cos(x) means du = -sin(x), so the final value should be − ∫ ( 1 − u 2 ) 2 d u .
4
∫ x − 2 x 2 + 4 x + 3 d x u = x − 2 d u = d x ∫ u x 2 + 4 x + 3 d u
… unsure?
Need to do division by polynomials
5
u d u v d v ∫ 0 3 π x cos ( 2 x ) d x = x = d x = 2 1 s in ( 2 x ) = cos ( 2 x ) d x 2 x s in ( 2 x ) ∣ 0 3 π − ∫ 0 3 π 2 1 s in ( 2 x ) d x 2 x s in ( 2 x ) ∣ 0 3 π − cos ( 2 x ) ∣ 0 3 π ( 6 π s in ( 2 π ) − s in ( 3 π )) − ( cos ( 3 2 π ) − cos ( 0 ))
Next to last line should have been
2 x s in ( 2 x ) ∣ 0 3 π + 4 1 cos ( 2 x ) ∣ 0 3 π ( 6 π s in ( 2 π ) − s in ( 3 π )) − ( 4 1 cos ( 3 2 π ) + 4 1 cos ( 0 ))