We can also reverse this through a process called “partial fracti ons”.
A+3B2A−5B2A+6B2A−5Bsubtract the previous two functions0−11BB3(−111)+A=1A=3x2+x−10x+3=(3x−5)(x+2)x+3=3x−5A+x+2B=(3x−5)(x+2)A(x+2)+B(3x−5)=(3x−5)(x+2)(A+3B)x+2A−5B=1=3=2=3=−1=−111=1114=3x−51114+x+2−111We know from the first fractionmultiply by 2 so things can cancel
This is useful for finding integrals of complicated fractions.
∫x2+3x−107x+7(x−2)A+(x+5)B(x−2)(x+5)A(x+5)+(x−2)(x+5)B(x−2)A+B=7−A2+B5=7A5+B5=35−A7=−28A=4B=3∫x−24+∫x+534ln∣x∣+3ln∣x∣+C subtract two funcs above