integration
sin2(x)+cos2(x)=1
tan2(x)+1=sec2(x)
Integrating Sin/Cos
udu∫sin4(x)cos3(x)dx=∫sin4(x)⋅[1−sin2(x)]cos(x)dx=sin(x)=cos(x)dx=∫u4(1−u2)du=∫u4−u6du=51u5−71u7+C=51sin(x)5−71sin(x07+C
Integration Tan/Sec
Example
udu∫tan2(x)sec4(x)dx=tan(x)=sec2(x)dx∫tan2(x)[tan2(x)+1]sec2(x)du∫u2[u2+1]du∫u4+u2du=51u5+31u3+C=51tan5(x)+31tan3(x)+C
Example 2
∫tan3(x)sec3(x)dxudu∫[sec2(x)−1]tan(x)sec2(x)sec(x)dx∫u2[u2−1]du∫u4−u2du51u5−31u3+C51sec(x)5−31sec(x)3+C=sec(x)=tan(x)sec(x)dx